“I’m kind of agnostic”

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Das Kind im 18. Jahrhundert. Beiträge zur Sozialgeschichte des Kindes

GEORGIUS PURKIRCHER, Opera quae supersunt omnia, ed. Miloslaus Okal, Bibliotheca Scriptorum Medii Recentisque Aevorum, new series, vol. 10, Budapest, Akademiai Kiado, 1988, 8vo, pp. 255, £1 1.00. Despite the existence of substantial biography, written in Hungarian in 1941, Georgius Purkircher (c. 1533-77) has never been a name to conjure with. He is known, if at all, only for a long poem on the...

متن کامل

Agnostic Clustering

Motivated by the principle of agnostic learning, we present an extension of the model introduced by Balcan, Blum, and Gupta [3] on computing low-error clusterings. The extended model uses a weaker assumption on the target clustering, which captures data clustering in presence of outliers or ill-behaved data points. Unlike the original target clustering property, with our new property it may no ...

متن کامل

Agnostic Boosting

We extend the boosting paradigm to the realistic setting of agnostic learning, that is, to a setting where the training sample is generated by an arbitrary (unknown) probability distribution over examples and labels. We deene a-weak agnostic learner with respect to a hypothesis class F as follows: given a distribution P it outputs some hypothesis h 2 F whose error is at most erP(F) + , where er...

متن کامل

Agnostic Learning of Geometric Patterns

Goldberg, Goldman, and Scott demonstrated how the problem of recognizing a landmark from a onedimensional visual image can be mapped to that of learning a one-dimensional geometric pattern and gave a PAC algorithm to learn that class. In this paper, we present an efficient on-line agnostic learning algorithm for learning the class of constant-dimension geometric patterns. Our algorithm can tole...

متن کامل

Agnostic Domain Adaptation

The supervised learning paradigm assumes in general that both training and test data are sampled from the same distribution. When this assumption is violated, we are in the setting of transfer learning or domain adaptation: Here, training data from a source domain, aim to learn a classifier which performs well on a target domain governed by a different distribution. We pursue an agnostic approa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Australian Review of Applied Linguistics

سال: 2020

ISSN: 0155-0640,1833-7139

DOI: 10.1075/aral.19083.per